永利yl23411 - 官网welcome

教师风采
副教授 当前位置: 永利yl23411 - 教师风采 - 副教授

明梅

2022-01-13    点击:[]





教师姓名:明梅

:副教授

:数学系

研究领域:偏微分方程

电子邮件mingmei (at) ynu.edu.cn

教育背景:中科院系统与科学研究院数学所,2005-2010,理学博士
 
电子科技大学数学学院,2001-2005,理学学士

工作经历2019.4至今,永利yl23411;

 2013.3-2019.4,中山大学数学学院;
 2012.3-2013.3
,巴黎高师数学系(ENSDMA)和巴黎数学基金(FSMP)博士后;
 2011.1-2011.12
Cergy-Pontoise大学数学系博士后;
 2010.7-2012.2
,电子科技大学数学学院,讲师。

教授课程:高等数学

主要研究领域:水波问题(Water-waves Problem),角形椭圆理论

主持项目:国家自然科学青年基金,不光滑区域上的水波问题及两相流的线性稳定性分析;

国家自然科学面上项目,角形区域水波问题及带状区域多重孤立波解。

论文列表:

[1] Mei Ming and Zhifei Zhang, Well-posedness of the water-wave problem with surface tension, J. Math. Pures Appl., 92(2009), 429-455

[2] Mei Ming, Ping Zhang and Zhifei Zhang, Large time well-posedness to the 3-D capillary-gravity waves in the long-wave regime, Archive for Rational Mechanics and Analysis, 204(2012), Issue 2, 387-444

[3] Mei Ming, Ping Zhang and Zhifei Zhang, Long wave approximation to the 3-D capillary-gravity waves, SIAM. J. Math. Anal.,44(2012), 4, 2920-2948

[4] Mei Ming, Jean Claude Saut and Ping Zhang, Long time existence of solutions to Boussinesq system, SIAM. J. Math. Anal., 44(2012), 6, 4078-4100

[5] Mei Ming, Frederic Rousset and Nikolay Tzvetkov, Multi-solitons and related solutions for the water-waves system, SIAM. J. Math. Anal., 47(2015), 1, 897-954

[6] David Lannes and Mei Ming, The Kelvin-Helmholtz instabilities in two-fluids shallow water models, Fields Institute Communications75(2015),185-234

[7] Mei Ming and Chao Wang, Elliptic estimates for Dirichlet-Neumann operator on a corner domain, Asymptotic Analysis, 104(2017), 103-166

[8] Mei Ming, Weighted elliptic estimates for a mixed-boundary system related to Dirichlet-Neumann operator on a corner domain, DCDS-A, 39(2019) Issue 10, 6039-6067

[9] Mei Ming and Chao Wang, Water waves problem with surface tension in a corner domain I: A priori estimates with constrained contact angle, SIAM. J. Math. Anal.,52(5)(2020), 4861-4899

[10] Mei Ming and Chao Wang, Water waves problem with surface tension in a corner domain II: The local well-posedness, Commun. Pure Appl. Math., 74 (2021), no. 2, 225–285.

Preprints:

1. Mei Ming and Chao Wang,Local well-posedness of the capillary-gravity water waves with acute contact angles, arXiv:2112.14001


上一篇:张根根

下一篇:陈子恒